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Abstract 
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Introduction 

Mild cognitive impairment (MCI) is a prodromal syndrome of neurodegenerative dementia 

without significant impairment in activities of daily living (ADL); however, it is unspecific 

as it can be caused by various pathologies (Winblad et al., 2004), and a considerable part of 

MCI patients remain stable or improve over time (Ritchie et al., 2001). Diagnostic criteria for 

MCI due to Parkinson’s disease (PD-MCI) and Alzheimer’s disease (AD-MCI) were 

established (Albert et al., 2011; Litvan et al., 2012). The progression rate in PD-MCI to PD 

dementia (PDD) is approximately 60% over 4 years (Janvin et al., 2006); the rate of 

conversion to AD in MCI patients varies depending on study design and definition of MCI, 

though maximally one to two fifths of MCI patients with amnestic impairments at baseline 

progress to dementia within 2–3 years of follow-up (Schmidtke and Hermeneit, 2008; Duara 

et al., 2011). However, novel treatment strategies require initiation of treatment at the earliest 

possible time (Panza et al., 2012), and, therefore, the corroboration of the diagnosis and the 

identification of the cause of MCI is very important. 

Quantitative electroencephalography (qEEG) has increasingly been used to characterize 

cognitive impairment in different disorders (Fonseca et al., 2009; Roh et al., 2011). The eyes 

closed resting state qEEG of patients suffering from dementia due to AD is characterized by 
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a shift to lower frequencies (Penttilä et al., 1985; Duffy et al., 1995; Bennys et al., 2001; 

Czigler et al., 2008). The same observation is reported in PD patients with cognitive decline 

(Caviness et al., 2007; Fonseca et al., 2009; Bousleiman et al., 2014). In contrast to AD, 

slowing of electroencephalogram (EEG) can already be found in de novo PD patients without 

any cognitive deficits (Stoffers et al., 2007). Comparison of AD and PDD patients with a 

similar degree of overt dementia showed more pronounced EEG slowing in PDD (Babiloni 

et al., 2011; Fonseca et al., 2013). However, it is unknown whether qEEG measures reliably 

discriminate between the two diseases at the beginning of the dementing process or whether 

they simply correlate with the extent of cognitive decline. Thus, the present study aims at 

characterizing qEEG parameters in PD-MCI and AD-MCI. 
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Materials and Methods 

Patients 

Twenty patients with PD and cognitive decline (see Table Table1)1) were recruited from the 

outpatient clinic for movement disorders of the University Hospital of Basel. PD was 

diagnosed according to UK Parkinson’s disease brain bank criteria. The diagnosis of PD-

MCI (N = 15) was based on Litvan et al. (2012). Diagnosis of “probable PDD” (N = 5) was 

made according to Emre et al. (2007), p. 007. All PD patients were treated with 

dopaminergic drugs [median levodopa-equivalent dose (LED) = 829 mg; range 188–

3044 mg]. 

Table 1 

Demographic characteristics and medications. 
 

NC ADa PDa p-Valuea Sub-group comparisonsb 

Age (years) 73.5 (67–83) 73.5 (57–87) 74 (60–84) 0.77 

 

Education (years) 13.5 (10–19) 14 (8–20) 15.5 (8–20) 0.60 

 

Gender (F/M) 11/9 10/10 5/15 0.12 
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NC ADa PDa p-Valuea Sub-group comparisonsb 

MMSE 29 (28–30) 28 (24–30) 29 (24–30) 0.02* NC > AD*, NC > PD*, AD = PD 

MMSE and CDT 9 (7–9) 9 (5–9) 8.5 (4–9) 0.34 

 

L-DOPA – – 18/20 

  

DOPA-agonists – – 13/20 

  

MAO-inhibitors – – 6/20 

  

Amantadine – – 2/20 

  

COMT-inhibitor – – 2/20 

  

AChE-inhibitors – 1/20 2/20 

  

Antidepressants – 3/20 4/20 

  

Neuroleptics – – 1/20 

  



 

NC ADa PDa p-Valuea Sub-group comparisonsb 

Benzodiazepines 1/20 1/20 1/20 

  

ap-Values for ANOVA, Kruskal–Wallis test. 

bMann–Whitney U test. 

*p < 0.05, “ =” no significant difference. 

Thirty-seven outpatients (Table (Table1)1) with either amnestic MCI (AD-MCI, N = 12) or 

mild dementia due to probable AD (N = 8) were recruited from the Memory Clinic, 

University Center for Medicine of Aging, Basel. Thereof 20 patients were matched to the PD 

group for gender, age, and education. MCI due to probable AD was diagnosed according to 

Winblad et al. (2004). Dementia due to probable AD was diagnosed according to McKhann 

et al. (1984). 

Exclusion criteria consisted of MMSE score (Folstein et al., 1975) <24/30, significant 

psychiatric or organic brain disorders other than PD or AD, any other severe illness, and drug 

treatment influencing EEG recordings (antiepileptic or antipsychotic drugs). 

Twenty normal controls (NC) were matched to both patient groups according to gender, age, 

and education (Table (Table1).1). Inclusion criteria were a subjective report of good health 

and a neuropsychological examination within normal limits. Exclusion criteria were a past 

and/or current diagnosis of any major brain disorder, alcoholism, psychiatric disorder, 

general anesthesia within the last 3 months and cognitive problems. To compare global 

cognitive function between both patient groups, we chose a combination of the MMSE and 

the clock drawing test (CDT) (Thalmann et al., 2002). The study protocol was approved by 

the local ethics committee. Written informed consent was provided by all participants. 

Neuropsychology 

Patients were examined with a comprehensive battery of neuropsychological tests [see Hatz 

et al. (2013) for details]. Raw scores of tests were transformed into demographically (age, 

gender, and education) adjusted z-scores (Berres et al., 2000). Cognitive performance was 

judged to be impaired when z-scores were less than −1.28, i.e., below the 10th percentile. 

EEG recording 

Electroencephalogram was recorded with a 256-channel EEG System (Netstation 300, EGI, 

Inc., Eugene, OR 97403, USA; DC-amplifier; sampling rate: 1000 Hz; high-pass filter: 

0.01 Hz; vertex-reference, impedance ≤40 kΩ). They were instructed to relax, but to stay 

awake and to minimize eye and body movements. A continuous EEG with closed eyes was 
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recorded for 12 min. During data acquisition, a subset of electrodes was monitored online by 

a technician to check for vigilance and artifacts. For patients taking benzodiazepines for 

sleep deprivation (one patient per group), medication was discontinued before EEG 

recording for at least 48 h. Only benzodiazepines with short half-life were allowed. One 

patient of the PD group was taking low-dose quetiapine for sleep deprivation, three patients 

were taking acetylcholinesterase inhibitors. 

Processing of EEG data 

Two minutes of EEG data (single segments of at least 40 s) without artifacts or signs of sleep 

and drowsiness were visually selected, filtered (0.5–70 Hz, 2400 order least-squares filter) 

and down-sampled (500 Hz). Data from 214 electrodes (excluding cheek and neck 

electrodes) were subjected to automated artifact detection (Hatz et al., 2014). Resulting EEG 

data were re-referenced to average reference and bad channels were interpolated with the 

spherical spline method. Power spectra were calculated from epochs of 4 s duration (Welch’s 

method, spectral resolution 0.25 Hz) using a 80% Hanning window. The relative power for 

each frequency band was computed as the ratio between the absolute bandpower and the 

bandpower from 1 to 30 Hz. Relative power in the delta- (1–4 Hz), theta- (4–8 Hz), alpha1- 

(8–10 Hz), alpha2- (10–13 Hz), and beta- (13–30 Hz) bands were logit-transformed 

[t(x) = log(x/(1 − x)] to achieve an approximate normal distribution (Gasser et al., 1982). 

Global band powers (average over all 214 electrodes) and regional band powers were 

computed. For regional analyses, electrodes were grouped into 10 regions of interest (ROI) 

corresponding to the frontal, central, temporal, parietal, and occipital areas bilaterally 

(Stoffers et al., 2007). Median frequency was calculated in a spectral window between 4 and 

14 Hz at occipital electrodes. For calculation of the median frequency, a “center of gravity” 

approach was chosen, taking into account all spectra generated for a single subject. 

Statistics 

Demographic characteristics were compared between groups using non-parametric tests. 

EEG variables and results of neuropsychological tests were compared between the three 

groups using ANOVA. Subsequently, post hoc t-tests between sub-groups were applied. In 

case of regional EEG power analysis, permutation tests (statistics: ANOVA, t-test, number of 

10,000 permutations) were used (Nichols and Holmes, 2002). A logistic regression analysis 

with backwards elimination to classify both groups was performed using the significant EEG 

measures from permutation tests as independent variables. Age, education, and gender served 

as covariates. Subsequently, a receiver–operator-characteristic (ROC) analysis was 

performed. Results with p-values <0.05 were considered significant. Comparison of 

demographic characteristics, global relative band power, neuropsychological results between 

groups and regression, as well as ROC analysis were done using R®. Frequency analysis, 

ANOVA’s, t-tests, and permutation tests were performed with Matlab®. 
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Results 

Demographics 

No significant differences between the patient groups regarding age, education, the combined 

MMSE/CDT, and gender were found (Kruskal–Wallis test, see Table Table1).1). MMSE 

scores of both patient groups were similar and significantly smaller than those of the NC 

group (p = 0.04). 

Neuropsychology 

Table Table22 gives results of group- and sub-group comparisons. Sub-group comparison 

found differences between PD and AD patients in alertness/reaction time and divided 

attention/errors and in verbal memory (encoding, recall, and recognition). 

Table 2 

Results of the neuropsychological assessments [age-, gender, and education corrected z-

values (Berres et al., 2000)]. 
 

NC ADa PDa p-

Valuea 

Sub-group comparisonsb 

Alertness −0.2 (−1.8 to 

0.7) 

−0.3 (−1.8 to 

2.3) 

0.1 (−2.1 to 

2.1) 

0.14 

 

Alertness RT 0.3 (−1.5 to 

2.3) 

−0.1 (−2.3 to 

2.8) 

−1.1 (−2.1 to 

0.5) 

0.004 NC = AD, NC > PD***, 

AD > PD* 

Divided attention: 

errors 

0.2 (−1.9 to 

2.3) 

0.2 (−1.2 to 

2.3) 

−1.5 (−2.1 to 

2.3) 

0.01 NC = AD, NC > PD*, AD > PD** 
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NC ADa PDa p-

Valuea 

Sub-group comparisonsb 

TMT-A 0.4 (−1.3 to 

3.5) 

0 (−2.6 to 

3.5) 

−0.3 (−3 to 

1.1) 

0.06 

 

Corsi blocks fw 0 (−1.2 to 

1.2) 

0 (−1.5 to 

1.8) 

−0.6 (−1.8 to 

1.2) 

0.32 

 

Digit span fw 0.1 (−2.9 to 

1.8) 

−0.5 (−2 to 

2.1) 

0.2 (−1.1 to 

3) 

0.10 

 

Corsi blocks bw 0.5 (−0.8 to 

1.9) 

−0.4 (−3.5 to 

1.2) 

−0.1 (−2.1 to 

1.5) 

0.01 NC > AD**, NC = PD, AD = PD 

Digit span bw 0.3 (−1.7 to 

2.3) 

−0.5 (−1.7 to 

2.9) 

0 (−1.1 to 

2.3) 

0.41 

 

Figures fluency −0.1 (−2 to 2) −1 (−3.7 to 

0.7) 

−0.8 (−1.9 to 

1.2) 

0.01 NC > AD**, NC > PD*, AD = PD 

Phonemic fluency 0 (−1.1 to 

2.6) 

−0.4 (−2.7 to 

1.2) 

−0.2 (−3.3 to 

2) 

0.23 

 



 

NC ADa PDa p-

Valuea 

Sub-group comparisonsb 

Semantic fluency 0.3 (−2.3 to 

2) 

−0.9 (−2.5 to 

0.7) 

−0.5 (−1.8 to 

0.8) 

0.002 NC > AD**, NC > PD*, AD = PD 

Boston naming test −0.4 (−1.9 to 

1.7) 

−0.4 (−2.3 to 

1.3) 

−0.6 (−3.3 to 

1.3) 

0.20 

 

Encoding −0.1 (−1.7 to 

1.8) 

−2 (−3.8 to 

−0.7) 

−1.3 (−3.7 to 

0.2) 

<0.001 NC > AD***, NC > PD***, 

PD > AD** 

Recall 0.3 (−2.1 to 

1.4) 

−2.5 (−4 to 

−0.3) 

−1.3 (−3.3 to 

0.4) 

<0.001 NC > AD***, NC > PD**, 

PD > AD** 

Recognition 0.2 (−2.4 to 

1.7) 

−1.6 (−4.5 to 

1.7) 

−0.6 (−3 to 

1.6) 

<0.001 NC > AD***, PD > AD**, 

NC = PD 

Open in a separate window 

ap-Values for Kruskal–Wallis test. 

bp-Values for Mann–Whitney U test. 

*p < 0.05, **p < 0.01, ***p < 0.001, “ =” no significant difference. 

Quantitative EEG 

Global relative theta and global relative alpha2 power differed between the three groups. In 

sub-group comparison, NC had lower theta power compared PD and tended to lower theta 

power compared to AD. AD tended to have lower global theta with respect to PD, which had 
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lower power in the alpha2 band compared to NC. Detailed results are given in Table 

Table33. 

Table 3 

Global relative power and median frequencies (median and range). 
 

NC ADa PDa p-

valuea 

Sub-group comparisonsb 

Delta (1–4 Hz) 19.5 (6.1–40.7) 19.4 (7.5–

32.9) 

20.4 (7.6–

37.0) 

0.59 

 

Theta (4–8 Hz) 11.2 (5.7–61.6) 16.5 (6.5–

46.9) 

24.4 (9.4–

56.6) 

0.002 NC < AD#, NC < PD**, AD < PD* 

Alpha1 (8–10 Hz) 13.7 (5.8–56.2) 25.7 (5.5–

55.4) 

16.9 (6.1–

37.0) 

0.39 

 

Alpha2 (10–

13 Hz) 

14.2 (2.7–56.1) 11.8 (4.4–

36.2) 

9.3 (4.1–25) 0.04 NC > PD**, AD = NC, AD = PD 

Beta (13–30 Hz) 24.2 (11.4–

42.1) 

18.9 (7.5–

48.2) 

22.3 (8.8–

28.3) 

0.30 

 

Median 

frequency 

9.2 (8.1–10.4) 8.8 (7.1–10.5) 8.1 (6.9–9.4) <0.001 NC > AD*, NC > PD***, 

AD > PD* 
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ap-Values for ANOVA. 

bp-Values for t-tests. 

#p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001, “ =” no significant difference. 

Regional analysis of relative power data revealed group and sub-group differences in the 

theta- and alpha2 bands as depicted in Figure Figure1.1. In both patient groups, the most 

significant differences as compared to NC were found in the left temporal region. 

 

 

Figure 1 

Differences of regional band power between the three groups (NC, AD, and PD). (A) Relative 

theta power, (B) relative alpha2 power. (First column: ANOVA, second to forth columns: t-tests; 

pink: p ≤ 0.05; red: p ≤ 0.01; corrected for multiple comparison by permutation). 

Occipital median frequency differed significantly between groups with the following pattern 

found in the post hoc analysis: NC > AD (p < 0.05), NC > PD (p < 0.001), and AD > PD 

(p < 0.05). 

As the median frequency was significantly different between AD and PD, it was chosen as 

independent variable for a logistic regression model to classify the two groups. A significant 

classification of both groups (p = 0.02) was achieved. After backwards elimination, the 

resulting model included only median frequency as predictor (p = 0.03). ROC analysis 

yielded an AUC of 0.72 with a sensitivity and specificity at the best index of Youden (0.45) 
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of 60 and 85%, respectively. The positive predictive and negative predictive values were 80 

and 68%, respectively. 

Control analysis 

We checked for a confounding influence of the variables MMSE, LED, alertness, age, and 

gender on the power values, by entering the variables into linear models with stepwise 

backwards elimination. No significant effects of the potentially confounding variables on the 

qEEG parameters were found. We conducted sensitivity analysis by running the statistics on 

all but one PD patient taking neuroleptics and on all but three patients taking AChE-

inhibitors. The outcome was not affected as similar results and significances were obtained 

with and without those patients. 
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Discussion 

The main alteration of EEG in patients with subtle cognitive deficits due to AD or PD 

consists in an increase of relative theta power, predominantly in the temporal regions and in a 

slowing of the occipital median frequency. The slowing is more pronounced in PD than in 

AD patients. 

Bi-temporal increase of relative theta power in demented PD and AD patients is a known 

finding (Babiloni et al., 2011). While in PD, EEG slowing occurs already before cognitive 

decline (Berendse and Stam, 2007), it is observed in AD with incipient MCI (Roh et 

al., 2011). 

Dysfunction of the cholinergic system is common in both, AD and PD (Mesulam et al., 2004; 

Bohnen and Albin, 2011) and an overlap of histopathological (Hughes et al., 1993; 

Emre, 2003) and biochemical changes (Alves et al., 2014) is known. EEG frequency is 

accelerated by cholinergic function and responds to therapy with acetylcholinesterase 

inhibitors in AD und PD (Fogelson et al., 2003; Babiloni et al., 2013). This fact could 

explain partly the slowing of EEG in both patient groups in our sample. Interestingly, EEG 

slowing is more pronounced in PD than in AD in the present study. This is in line and 

extends the findings by Babiloni et al. who found similar results AD and PD patients with 

more advanced cognitive dysfunction This difference may reflect a greater cholinergic deficit 

in cognitively impaired patients with PD-compared to AD (Bohnen et al., 2003; Kotagal et 

al., 2012) and reflects the degeneration of the cholinergic system as an important factor for 

cognitive decline in PD (Emre et al., 2004). 

The advantage of the present study is the comparison of demographically well balanced 

groups of patients with AD or PD at incipient cognitive decline with a group of NCs. 

Limitations include the relatively small sample sizes and the inherent failure of AD-MCI 

patients to formally fulfill the diagnostic criteria of AD. Longitudinal assessment of these 

patients is warranted. 
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Author information 
Abstract 

EEG studies of Parkinson's disease (PD) have shown that the incidence of EEG abnormalities is 

higher than in normal old individuals. The most common alteration in PD is generalized slowing of 

the EEG. We studied 18 patients with Parkinson dementia, 18 age-matched Parkinson patients 

without dementia and 20 controls. The absolute and relative amplitudes of delta, theta, alpha and 

beta bands and the peak and mean frequency were calculated from EEG spectra recorded from the 

T6-O2 derivation. All variables differed significantly in Parkinson dementia patients compared to 

controls. The most conspicuous finding was the increase of delta activity. Parkinsonian patients 

without dementia had more theta activity and the frequencies were slow compared to controls. We 

conclude that parkinsonian subgroups have distinct patterns of abnormality in EEG spectra: 

Parkinson patients with dementia have distinctly slower EEGs than patients without dementia. 
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